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Abstract. We give a complete analytical computation of three- and two-point loop integrals occurring in
heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and
residual momenta.

1 Introduction

The study of the dynamics and spectroscopy of hadrons
containing a heavy quark has been greatly simplified and
systematized with the introduction of heavy quark effec-
tive theory (HQET) [1]. Heavy-particle theories along sim-
ilar lines have also succesfully been applied in other, re-
lated contexts. Thus, in those cases where a chiral ap-
proach to the strong interactions of heavy hadrons with
light mesons is applicable, a combination of chiral and
heavy quark symmetries leads to heavy hadron chiral per-
turbation theory (HHChPT) [2]. A heavy particle expan-
sion has also been developed in the chiral-perturbative
framework for nucleon–meson interactions, which consti-
tutes the so-called heavy baryon chiral perturbation the-
ory (HBChPT) [3].

In the heavy quark limit the interaction of a heavy
quark, or hadron, with the light degrees of freedom can-
not change its four-velocity vµ. In consequence, vµ be-
comes a good quantum number and, therefore, heavy par-
ticle effective theories of the strong interactions are ex-
pressed in terms of velocity-dependent fields. Weak inter-
actions, or other external sources, however, can change
the velocity and/or flavor of a heavy quark or hadron.
Strong-interaction corrections to velocity-changing inter-
action vertices then involve loop integrals with two differ-
ent velocities.

In this paper we report on a complete analytic com-
putation of three-point loop integrals involving a velocity
change, and two-point loop integrals. We consider a class
of one-loop integrals occurring in heavy particle theories,
with arbitrary real values for external masses and resid-
ual momenta. Since our aim here is mainly methodologi-
cal, we will not discuss specific phenomenological applica-
tions. For definiteness, however, we adopt the language of
HHChPT in the sequel.
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In the next section, we define the integrals to be stud-
ied, establish our notations and conventions, and discuss
the method we use. This entails a combination of the
HQET technique and of standard methods for computing
loop integrals [4–6]. In Sect. 3 we give technical details
about the computation of the scalar three-point integral,
state our results and discuss several important limits and
particular cases and cross-checks. In Sect. 4 we briefly
consider the two-point integral, which has already been
given in the previous literature. In Sect. 5 the vector and
second-rank tensor integrals are given in terms of form
factors. Finally, in Sect. 6 we give some final remarks.

2 Method. Notation and conventions

The loop integrals we consider are of the form

I3
α1···αn =

iµ4−d

(2π)d

∫
ddq

× qα1 · · · qαn

(2v1 · (q + k1) − δM1 + iε)

× 1
(2v2 · (q + k2)−δM2 + iε)(q2 − m2 + iε)

,(1)

I2
α1···αn =

iµ4−d

(2π)d

∫
ddq

× qα1 · · · qαn

(2v · (q + k) − δM + iε) (q2 − m2 + iε)
. (2)

Here vµ
i , i = 1, 2, are the velocities of the external heavy

legs, kµ
i their residual momenta, and δMi their mass split-

tings relative to the common heavy mass of the corre-
sponding heavy flavor/spin multiplet. m is the mass of
the light particle, which in HHChPT corresponds to a
light pseudoscalar meson. These integrals are defined in
d = 4−ε dimensions, µ being the mass scale of dimensional
regularization. Their degrees of divergence are n + d − 4
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for I3
α1···αn and n + d − 3 for I2

α1···αn . The factor of 2 in
front of vµ

i corresponds to our normalization of the heavy
particle propagators.

In this section we will restrict ourselves to the scalar
case n = 0. The cases n = 1, 2 will be considered in de-
tail in Sect. 5. Together with I2,3 we consider also the
auxiliary integrals

Ĩ3 =
iµ4−d

(2π)d

∫
ddq

× 1
((q + p1)2 − M2

1 + iε) ((q + p2)2 − M2
2 + iε)

× 1
(q2 − m2 + iε)

, (3)

Ĩ2 =
iµ4−d

(2π)d

∫
ddq

× 1
((q + p)2 − M2 + iε) (q2 − m2 + iε)

. (4)

Ĩ3 is convergent in four dimensions, with degree of diver-
gence d − 6. Ĩ2 has degree of divergence d − 4, diverging
logarithmically at d = 4. The relations among external
momenta and masses in I3 and Ĩ3 are, (i = 1, 2)

pµ
i = Mvµ

i +kµ
i , pµ

i piµ > 0; Mi = M+
1
2
δMi, Mi > 0,

(5)
and similarly for I2 and Ĩ2. We remark at this point that
Ĩ2,3 need not be related to Feynman diagrams in any ex-
isting physical theory. The similarity of the limit M → ∞
studied below with the heavy quark limit is purely formal.
Ĩ2,3 are just intermediate steps in our calculation of I2,3,
as we discuss next.

In the limit M → ∞ we have, (k = 1, 2)

1
(q + pk)2 − M2

k + iε
=

1
M

1
2vk · (q + kk) − δMk + iε

+O
(

1
M2

)
. (6)

Since ∂I2,3/∂m2 are convergent for d = 4, (6) leads to

∂I3

∂m2 = M2 ∂Ĩ3

∂m2 +O
(

1
M

)
,

∂I2

∂m2 = M
∂Ĩ2

∂m2 +O
(

1
M

)
.

(7)
Therefore, at d = 4 we must have

I3 = I3|m=0 + M2
(
Ĩ3 − Ĩ3|m=0

)
+ O

(
1
M

)
, (8)

I2 = I2|m=0 + M
(
Ĩ2 − Ĩ2|m=0

)
+ O

(
1
M

)
. (9)

Moreover, using equations (5) and defining ∆j ≡ δMj −
2vj ·kj , we can write I3, Ĩ3 in terms of ∆i. Differentiating
we obtain, to leading order in 1/M ,

∂I3

∂∆j
= M2 ∂Ĩ3

∂∆j
+ O

(
1
M

)
, j = 1, 2, (10)

or, equivalently,

I3 = M2Ĩ3 + C1(∆1) + O
(

1
M

)
= M2Ĩ3 + C2(∆2) + O

(
1
M

)
. (11)

Here, the dependence of C1,2 on d, M, µ, m and v1 · v2 is
understood, but it is shown explicitly that C1 can depend
on ∆1 but not on ∆2, and the oposite is true for C2. Sub-
tracting the two equations (11) term by term, we conclude
that C1 = C2 = C(d, M, µ, m, v1 · v2) do not depend on
∆1,2. (Furthermore, (7) together with (10) imply that C
does not depend on m either.) Thus,

I3 = I3|∆1=0=∆2 + M2
(
Ĩ3 − Ĩ3|∆1=0=∆2

)
+ O

(
1
M

)
.

(12)
We notice that I3 is straightforward to compute for ∆j =
0 by using the HQET method for combining denominators
(see, e.g., [7]). On the other hand, Ĩ3 is needed in (12) only
at d = 4, and to leading order in M , including logarithmic
corrections. (12) will then be the starting point for our
computation of I3. Equations for I2 analogous to (11) and
(12) can also be obtained, involving two derivatives. We
will find it more convenient to use (9) in order to compute
I2.

Scalar integrals can depend on vµ
1 , vµ

2 only through
ω = v1 · v2. If we denote by Ω the magnitude of the three-
velocity associated to vµ

1 or vµ
2 in the rest frame of vµ

1 +vµ
2

then [8, §11.5]

ω = v1 · v2 =
1 + Ω2

1 − Ω2 ; Ω =

√
− (vµ

1 − vµ
2 )2

(vµ
1 + vµ

2 )2
=

√
ω − 1
ω + 1

.

(13)
Together with Ω, the roots of (vµ

1 − αvµ
2 )2 = 0, given by

α± = ω ±
√

ω2 − 1 =
1 ± Ω

1 ∓ Ω
, (14)

will appear frequently below. For physical values of vµ
1,2,

such that (vµ
1,2)

2 = 1, we have ω > 1, 0 < Ω < 1, 0 <
α− < 1 < α+. We will always assume these inequalities to
hold in what follows.

Logarithms have a cut along the negative real axis. The
log of a product can be split as log (ab) = log (a)+log (b) if
Im(a) and Im(b) have opposite sign, or if a > 0. Similarly,
log (a/b) = log (a) − log (b) if Im(a) and Im(b) have the
same sign, or if a > 0 [4]. Given a complex number z, we
use that determination of the argument such that −π <
arg(z) < π. In particular, log (1/z) = − log (z). We use the
same definition and conventions as [4] for the dilogarithm,
which we denote by Li2.

3 The scalar three-point integral

We will now consider in detail the calculation of I3. Our
first step is to compute Ĩ3 to leading order in M. As men-
tioned above, we only need to evaluate Ĩ3 at d = 4. We
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Ĩ3 =
1

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy
1

(yp1 + xp2)2 + y(M2
1 − p2

1 − m2) + x(M2
2 − p2

2 − m2) + m2 − iε
(15)

introduce a standard Feynman parametrization of the in-
tegrand in (3). Integrating over d4q and over the Feynman
parameter associated with the third propagator in (3), we
obtain (15) (see top of this page).

In the limit M → ∞ the polynomial in the denom-
inator is a sum of terms of the form Mpxqyp−q, with
p = 0, 1, 2 and 0 ≤ q ≤ p, the term with p = 0 being
m2 − iε. These are properties we want to maintain, in or-
der to be able to take the limit M → ∞ later, retaining
only the leading terms in M in each coefficient. Thus, we
will not make a change of variable y → 1−y at this stage,
as the limits of integration suggest. Following [4], we shift
variables according to y → y − αx. This shift is homo-
geneous in x, y, so it does not change the order of each
term as M → ∞. The parameter α is taken to be one of
the roots α± of (p2 − αp1)2 = 0. For M large, we have
α+ > 1 > α− > 0. Choosing α = α+ and exchanging the
order of integration, we are led to

Ĩ3 =
1

(4π)2

{∫ 1

0
dy

∫ y/α+

0
dx +

∫ α+

1
dy

∫ y/α+

y−1
α+−1

dx

}
1
D

,

(16)
D =

(
2y(p1 · p2 − α+p2

1)

+ (M2
2 − p2

2 − m2) − α+(M2
1 − p2

1 − m2)
)
x

+p2
1y

2 + y(M2
1 − p2

1 − m2) + m2 − iε.

Using (5) and retaining only leading powers of M in each
coefficient, the previous expression simplifies considerably.
In the limit M → ∞, α± are given by (14). Performing
the integration over x we obtain

Ĩ3 = − 1
64π2

1 − Ω2

Ω

1
M2

∫ 1

0
dy

1
G

log
(

K

H

)
− 1

64π2

1 − Ω2

Ω

1
M2

∫ α+

1
dy

1
G

log
(

K

L

)
, (17)

L = H − 4Ω

1 − Ω2

y − 1
α+ − 1

G; K = H − 4Ω

1 − Ω2

y

α+

G,

H = y2 +
∆1

M
y +

m2

M2 − iε; G = y − y0

M
,

with

y0 = −1 + Ω

2Ω
(Ω∆+δ); ∆ =

1
2
(∆1+∆2); δ =

1
2
(∆1−∆2).

(18)
In these last two equations we have introduced several
notations that will be needed later. In the second integral
in (17) the variable y is O(1) over the entire domain of
integration. Therefore, My = O(M) and the integral is
given, to leading order in M , by

− 1
64π2

1 − Ω2

Ω

1
M2

∫ α+

1
dy

1
y

log
(

α−
y − iε

−y + α+ + 1 − iε

)
.

(19)

This expression does not depend on ∆1,2. Therefore, it
will cancel when we subtract Ĩ3|∆1=0=∆2 from Ĩ3, and will
not contribute to I3 as given in (12). We shall then drop
this term from Ĩ3 from now on. The remaining integral
can be rewritten as

Ĩ3 =
1

64π2

1 − Ω2

Ω

1
M2

×
∫ 1

0
dy

1
G

{log (H) − log (K)} + · · · . (20)

We notice that there is no singularity at the zero of the
denominator, since the numerator vanishes there. We will
denote y1±/M and y2±/M the roots of H and K, respec-
tively. They are given by

y1± =
1
2

(
−∆1 ±

√
∆2

1 − 4m2 + iε
)

;

y2± =
α+

2

(
−∆2 ±

√
∆2

2 − 4m2 + iε
)

. (21)

From their definition, (17), it is clear that H and K are
equal at the zero of G. Defining

zkσ = ykσ − y0, k = 1, 2, σ = ±, (22)

the equality of H and K at y = y0/M can be expressed as

z1+z1− = α2
−z2+z2−, (23)

an identity that will be important below.
After factorizing H and K and splitting the logs in

(20), we find

Ĩ3 =
1

64π2

1 − Ω2

Ω

1
M2

∫ 1

0
dy

× 1
y − y0/M

{
log
(
y − y1+

M

)
+ log

(
y − y1−

M

)
− log

[
α−

(
y − y2+

M

)]
− log

[
α−

(
y − y2−

M

)]}
. (24)

In order to be able to distribute the integral inside the
braces without introducing spurious singularities, we use
(23) to add and subtract the value of each log at the pole.
In this way we obtain

Ĩ3 =
1

64π2

1 − Ω2

Ω

1
M2

∑
k,σ

(−1)k+1
∫ 1

0
dy

× 1
y − y0/M

{
log
(
y − ykσ

M

)
− log

( y0

M
− ykσ

M

)}
,

(25)
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where the sum runs over k = 1, 2 and σ = ±. These
integrals are already in standard form. Evaluating them
to leading order in M , we arrive at

Ĩ3 =
1

64π2

1 − Ω2

Ω

1
M2

∑
k,σ

(−1)k+1

×
{

1
2

log2
(

M

µ

)
− π2

6
− log

(
M

µ

)
log
(

−zkσ

µ

)
−1

2
log2

(
zkσ

µ

)
+ log

(
zkσ

µ

)
log
(

−zkσ

µ

)
− log

(
− y0

zkσ

)
log
(

ykσ

zkσ

)
− Li2

(
ykσ

zkσ

)}
. (26)

In order to simplify this result we have explicitly used
the relation log(µ/zkσ) = − log(zkσ/µ) as explained in
Sect. 2. Notice that we have introduced a mass scale µ
that makes the arguments of the logs dimensionless. The
first two terms in (26) are independent of k and therefore
they cancel out in the sum. The third term can be simpli-
fied by making use of (23), which results in a term of the
form (1 − Ω2)/(64π2M2Ω) log(α2

+) log(M/µ).
The integral Ĩ3 at ∆j = 0 is straightforward to com-

pute. Its logarithmic dependence on M cancels that of Ĩ3,
so that we obtain

Ĩ3 − Ĩ3|∆j=0 =
1

32π2M2

1 − Ω2

2Ω

×
{

log2 (α+) + log
(
α2

+

)
log
(

m

µ

)
+
∑
k,σ

(−1)k

[
1
2

log2
(

zkσ

µ

)

− log
(

zkσ

µ

)
log
(

−zkσ

µ

)
+ log

(
− y0

zkσ

)
× log

(
ykσ

zkσ

)
+ Li2

(
ykσ

zkσ

)]}
. (27)

This is essentially the final result, except for the dimen-
sional regularization pole term, which is supplied by
I3|∆j=0 (see (12)). Setting n = 0, δMj = 0 = kj , j = 1, 2,
in (1), we obtain, after using the HQET method for com-
bining denominators and integrating over ddq,

I3 |∆j=0 =
µ4−d

(4π)d/2 Γ

(
3 − d

2

)∫ 1

0
dx

∫ ∞

0
dλ

× λ

[λ2 (x2+(1 − x)2+2x(1−x)ω)+m2−iε]3−d/2 . (28)

The innermost integral can be evaluated by changing the
variable to u = λ2. We get

I3|∆j=0 =
1

2(4π)d/2 Γ

(
2 − d

2

)( µ

m

)4−d

×
∫ 1

0
dx

1
x2 + (1 − x)2 + 2x(1 − x)ω

=
1

2(4π)d/2 Γ

(
2 − d

2

)( µ

m

)4−d 1 − Ω2

4Ω
log
(
α2

+

)
=

1
64π2

1 − Ω2

Ω
log (α+)

(
2
ε

− γE + log (4π)

+ log
(

µ2

m2

))
+ O(ε), (29)

where γE is Euler’s gamma.
Thus, finally, using (12), (27) and (29), we obtain,

I3 =
1

64π2

1 − Ω2

Ω

×
{

2
ε

log (α+) + log2 (α+) +
∑
k,σ

(−1)k

[
1
2

log2
(

zkσ

µ

)

− log
(

zkσ

µ

)
log
(

−zkσ

µ

)
+ log

(
− y0

zkσ

)
log
(

ykσ

zkσ

)
+ Li2

(
ykσ

zkσ

)]}
, (30)

where we used (23) to rewrite log(µ) in (27) as log(µ) =
log(µ(4π)1/2) − γE. Equation (30) is our main result. It
gives the analytical expression for I3 for general real values
of the external masses and residual momenta. Below we
consider some particular values of the parameters which
are important in practice, and in which the expression
for I3 takes on a simplified form. They can also serve as
cross-checks of (30).

We note that I3, given by (1) with n = 0, is symmetric
under exchange of heavy particles 1 ↔ 2. The general
result (30) is not manifestly invariant under ∆1 ↔ ∆2, but
its symmetry has been thoroughly checked numerically.

3.1 The case y0 < 0 and the zero-recoil limit

An important particular case to consider is the case vµ
1 =

vµ
2 or, equivalently, Ω = 0 (ω = 1). I3 at Ω = 0 can be

computed more directly by differentiating I2 (see Sect. 4).
Therefore, its calculation from (30) constitutes a cross-
check.

The limit Ω → 0, however, is difficult to take in (30).
As indicated by the factor 1/Ω in that equation, the limit
results from complicated cancellations among different
terms in the sum in (30). Individually, some of those terms
may be large as Ω → 0. This situation arises mainly
from the addition and subtraction of terms of the form
log(y0/M − ykσ/M) in (25), which is necessary when y0 >
0, since in that case there is a singularity in the integra-
tion domain. If, however, we restrict ourselves to the case
y0 < 0, then the general expression (30) takes a simpler
form, which makes the zero-recoil limit transparent.

As mentioned at the end of the previous section, I3 is
symmetric under exchange of ∆1 and ∆2. Hence, without
loss of generality we can assume δ > 0 (see (18). The case
δ = 0 will be considered afterwards as a limiting case).
From the definition of y0 in (18) we see that, if δ > 0,
then for sufficiently small Ω we will have y0 < 0. This is
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therefore the relevant parameter region to consider when
Ω → 0.

Assuming, then, y0 < 0, we can go back to (24) and dis-
tribute the integral inside the braces without adding extra
terms. The calculation goes through unchanged, yielding

I3
∣∣

δ>0
y0<0

=
1

64π2

1 − Ω2

Ω

×
{

log (α+)
[
2
ε

+ log (α+) + log
(

µ2

4Ω2y2
0

)]
+
∑
k,σ

(−1)k

[
1
2

log2
(

1 − ykσ

y0

)
+ log

(
1 − ykσ

y0

)

× log
(

2Ωy0

ykσ

)
+ Li2

(
ykσ

zkσ

)]}
. (31)

The zero-recoil limit of this expression can be easily ob-
tained. Using the assumption δ > 0 and the relation (valid
for Ω = 0) ∑

k,σ

(−1)kykσ = 2δ,

we find

I3
∣∣

δ>0
Ω=0

=
1

32π2

(
2
ε

+ 2

+
∑
k,σ

(−1)k+1 ykσ

δ
log
(

−ykσ

µ

))
. (32)

It is understood that in this equation we must set Ω = 0
in the expression (21) for ykσ. In Sect. 4 we will obtain
this result from I2.

We give, finally, the result for I3 at zero-recoil when
δ = 0 (∆1 = ∆2 ≡ ∆). We just take the limit of (32) as
δ → 0 to obtain

I3
∣∣

δ=0
Ω=0

=
1

32π2

{
2
ε

+ log
(

µ2

m2

)
+

∆√·
[
log
(

∆ − √·
µ

)
− log

(
∆ +

√·
µ

)]}
, (33)

where (·)1/2 = (∆2 −4m2 +iε)1/2. Notice that, in general,
we cannot express the difference of logs in (33) as the log
of the ratio of the arguments , because their imaginary
parts have opposite sign.

3.2 The case y0 = 0

When y0 = 0 the general expression (30) for I3 is singular.
The singularity is avoidable, though, so that we can take
the limit y0 → 0 in (30) to get

I3
∣∣

y0=0
=

1
64π2

1 − Ω2

Ω
log (α+)

(
2
ε

+ log (α+)
)

+
1

64π2

1 − Ω2

Ω

∑
k,σ

(−1)k

[
1
2

log2
(

ykσ

µ

)

− log
(

ykσ

µ

)
log
(

−ykσ

µ

)]
. (34)

This expression is valid, in particular, when ∆1 = 0 = ∆2,
which is the point in parameter space we used to “match”
I3 and Ĩ3. As is easily seen, in that case we recover (29).

3.3 The case m = 0

The case m = 0 is relevant to theories involving massless
particles, such as gluons in HQET and Goldstone bosons
in chiral theories in the limit of massless quarks . The
value of I3 at m = 0 can be obtained from the general
expression (30), and also by direct computation from (1)
using the HQET method for combining denominators. We
will consider both approaches in this section. Together
with the zero-recoil case studied in Sects. 3.1 and 4, this
is one of our main cross-checks.

We will now study the limit m → 0 of I3 as given in
(30). We notice that when m = 0 one of the two possible
values σ = ± leads to ykσ = 0 (see (21)). In fact, m = 0
and ∆k > 0 (resp. ∆k < 0) implies yk+ = 0 (resp. yk− =
0). Calling σk = −sgn(∆k) = −σ′

k, so that ykσk
6= 0 =

ykσ′
k
, we have zkσ′

k
= −y0 + iεσ′

k and, therefore,

log

(
− y0

zkσ′
k

)
log

(
ykσ′

k

zkσ′
k

)
= 0; Li2

(
ykσ′

k

zkσ′
k

)
= 0,

so these terms drop from the sum in (30). On the other
hand, since y0 is by definition (18) a real number, we have
the equalities

2∑
k=1

(−1)k 1
2

log2 (−y0 + iεσ′
k) =

iπθ(y0) log (y0)
2∑

k=1

(−1)kσ′
k ,

2∑
k=1

(−1)k log (−y0 + iεσ′
k) log (y0 − iεσ′

k) =

iπsgn(y0) log (|y0|)
2∑

k=1

(−1)kσ′
k,

θ(x) being a step function. With these relations taken into
account, from (30) we find for I3

I3
∣∣

m=0
=

1
64π2

1 − Ω2

Ω

{
2
ε

log (α+) + log2 (α+)

+
2∑

k=1

(−1)k

[
1
2

log2
(

zkσk

µ

)
− log

(
zkσk

µ

)
log
(

−zkσk

µ

)
+ log

(
− y0

zkσk

)
× log

(
ykσk

zkσk

)
+ Li2

(
ykσk

zkσk

)
+ E(y0)

]}
, (35)

E(y0) ≡ iπθ(−y0) log
( |y0|

µ

) 2∑
k=1

(−1)kσ′
k
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= −2iπ log
(−y0

µ

)
θ(∆1)θ(−∆2). (36)

Notice that the sum in (35) runs over k = 1, 2 but not over
σk, and that −y0 > 0 in (36) due to the step functions. As
before, ykσk

and zkσk
in (35) are given by (21) and (22)

with m set to zero. When δ = 0 (∆1 = ∆2 ≡ ∆), equation
(35) becomes

I3
∣∣

m=0=δ
=

1
64π2

1 − Ω2

Ω

{
2
ε

log (α+)

− 1
2

log (α+) log
(

1 − Ω2

4

)
− 2 log (α+)

× log
(

∆ − iε
µ

)
+ Li2

(
1 − Ω

2

)
− Li2

(
1 + Ω

2

)}
, (37)

a result we will explicitly cross-check below.
We now turn to the calculation of I3 at m2 = 0 di-

rectly from its definition (1) with the HQET method for
combining denominators. For the sake of brevity, we will
skip the details of the derivation and quote the final result,
which can be written as

I3
∣∣

m=0
=

1
64π2

1 − Ω2

Ω

×
{

2
ε

log (α+) − 1
2

log (α+) log
(

1 − Ω2

4

)
+ Li2

(
1 − Ω

2

)
− Li2

(
1 + Ω

2

)}
+

1
64π2

1 − Ω2

Ω

{
− log

( −(1 + Ω)δ
Ω∆ − δ − iε

)
log
(

∆ + δ − iε
µ

)
+ log

( −(1 − Ω)δ
Ω∆ − δ − iε

)
log
(

∆ − δ − iε
µ

)
−Li2

(
∆ + δ − iε

∆ − δ/Ω − iε

)
+ Li2

(
∆ − δ − iε

∆ − δ/Ω − iε

)
+ (δ → −δ)

}
. (38)

Here, the terms within braces in the second and third line
are to be repeated with δ replaced by −δ as indicated.

When δ = 0, (38) reduces to (37). Thus, in the case
m = 0 = δ we have an analytic cross-check of our re-
sults. In the more general case δ 6= 0, we have numerically
compared general expression (30) for small values m, with
equations (35) and (38). The three expressions for I3|m=0

were found to agree over a wide range of real values for
∆1, ∆2, and 0 < Ω < 1, again providing a cross-check for
(30).

4 The scalar two-point integral

The scalar two-point integral I2 is given by (2) with n = 0.
I2 is a function of m and ∆ = δM − 2v · k. The starting

point for the calculation of I2 is (9). The computations of
both Ĩ2 and I2|m=0 are standard. Defining

x± =
1
2

(
−∆ ±

√
∆2 − 4m2 + iε

)
, (39)

from (9) we obtain

I2 =
∆

32π2

(
2
ε

+ 2
)

+
1

16π2

(
x+ log

(
−x+

µ

)
+ x− log

(
−x−

µ

))
. (40)

This result can also be obtained by using the HQET
method for combining denominators, which yields an
equivalent expression in terms of hypergeometric func-
tions.

In order to compare our result (40) for I2 with those
in the previous literature, we rewrite it in terms of ξ =
∆/(2m),

I2(∆, m) =
∆

32π2

(
2
ε

+ log
(

µ2

m2

)
+ 2
)

+
m

16π2 F(ξ) (41)

with F(x) = (ξ2 − 1 + iε)1/2
[
log
(
ξ − (ξ2 − 1 + iε)1/2

)
− log

(
ξ + (ξ2 − 1 + iε)1/2

)]
. The coefficient of the dimen-

sional regularization pole vanishes when ∆ = 0. This is
due to the fact that the real part of the integrand in (2)
is parity-odd when ∆ = 0.

Equation (41) agrees with [9] for all real values of ∆,
once their different normalization and conventions are
taken into account. It agrees with the results from [10,
11] (see also the second of [2]) only in the region x > 0,
our result being different from theirs over the entire neg-
ative semiaxis.

We consider now I3 at zero recoil. As shown in [10],
and seen from its definition (1), I3 at Ω = 0 can be ob-
tained from I2 as

I3
∣∣

Ω=0
(∆1, ∆2)=

1
∆1 − ∆2

(I2(∆1, m) − I2(∆2, m)) , and

I3
∣∣

Ω=0
(∆, ∆) =

∂

∂∆
I2(∆, m). (42)

Substituting the value of I2(∆, m) given by (41) in (42),
we recover our previous results (32) and (33), as can be
easily checked.

5 Vector and tensor integrals

In this section we give general expressions for vector and
second-rank tensor integrals in terms of form factors. We
also compare our results to those in the literature, when
available. The form factors will be expressed in terms of
scalar integrals. Of those, I2 and I3 have been given in
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previous sections. We will also need

I1 =
iµ4−d

(2π)d

∫
ddq

1
(q2 − m2 + iε)

= − m2

16π2

(
2
ε

+ log
(

µ2

m2

)
+ 1
)

+ O(ε), (43)

with m > 0, d = 4 − ε, log
(
µ2
)

= log
(
µ24π

) − γE. Two
other scalar integrals appear in the evaluation of the tensor
ones,

I1
′ =

iµ4−d

(2π)d

∫
ddq

1
(2v · q − ∆ + iε)

and (44)

I2
′ =

iµ4−d

(2π)d

∫
ddq

1
(2v1 · q − ∆1 + iε) (2v2 · q − ∆2 + iε)

Both I1
′ and I2

′ vanish, as we will now show. The easiest
way to see that I1

′ = 0 is by applying the axioms of di-
mensional regularization [12, §4.1]. We consider I1

′(vµ, d)
as a function of d and vµ, momentarily allowing vµvµ > 0,
not necessarily equal to 1. Then, we can always shift the
integration variable so that

I1
′(vµ, d) =

iµ4−d

(2π)d

∫
ddq

1
(2v · q + iε)

.

Let s > 0, and consider I1
′(svµ, d). By factoring s out of

the integral we get, I1
′(svµ, d) = 1/sI1

′(vµ, d), whereas by
rescaling the integration variable qµ we find, I1

′(svµ, d) =
1/sdI1

′(vµ, d). Therefore, we must have 1/sI1
′(vµ, d) =

1/sdI1
′(vµ, d) for all s > 0 and all complex d, exclud-

ing positive integer values. Since I1
′ must be an analytic

function of d, we conclude that it vanishes for vµvµ > 0.
We now turn to I2

′. Introducing a Feynman parame-
ter, we can write it as

I2
′ =

iµ4−d

(2π)d

∫ 1

0
dx

∫
ddq

1
2V (x) · q − ∆(x) + iε

,

with V µ(x) = xvµ
1 +(1−x)vµ

2 and ∆(x) = x∆1+(1−x)∆2.
For vµ2

1 = 1 = vµ2
2 and 0 ≤ x ≤ 1 we have V µ2(x) > 0.

Thus, the inner integral is I1
′(V µ, d) and since I1

′ = 0,
I2

′ also vanishes.

5.1 Vector and tensor two-point integrals

The vector two-point integral is given by

I2
µν(vα, ∆, m) =

iµ4−d

(2π)d
(45)

×
∫

ddq
qµ

(2v · q − ∆ + iε) (q2 − m2 + iε)
.

Lorentz invariance dictates that I2 is given in terms of
only one form factor, which can be immediately evaluated
by algebraic reduction [5,6]:

I2
µ(vα, ∆, m) = F (∆, m)vµ, with (46)

F (∆, m) = vµI2
µ(vα, ∆, m) =

1
2
I1(m) +

∆

2
I2(∆, m),

where the scalar integrals I1 and I2 have been given in
(43) and in Sect. 4, respectively.

The tensor two-point integral is defined as

I2
µν(vα, ∆, m) =

iµ4−d

(2π)d
(47)

×
∫

ddq
qµqν

(2v · q − ∆ + iε) (q2 − m2 + iε)
.

We will introduce two sets of form factors. First, we define

I2
µν(vα, ∆, m) = I0(∆, m)gµν + I1(∆, m)vµvν . (48)

Second, we introduce F form factors which can be easily
computed in terms of scalar integrals:

F0(∆, m) ≡ gµνI2
µν = dI0 + I1 = m2I2(∆, m), (49)

F1(∆, m) ≡ vµvνI2
µν = I0 + I1

=
∆

4
(I1(m) + ∆I2(∆, m)

)
. (50)

In fact, F0(∆, m) = I1
′ + m2I2(∆, m), so here we have

used I1
′ = 0. Inverting the relation among F s and Is we

obtain, to lowest order in ε = 4 − d,

I0(∆, m) = −1
3

(
1 +

ε

3

)
(51)

×
[
∆

4
I1(m) +

(
∆2

4
− m2

)
I2(∆, m)

]
,

I1(∆, m) =
∆

3

(
1 +

ε

12

)
(52)

× [I1(m) + ∆I2(∆, m)
]

−m2

3

(
1 +

ε

3

)
I2(∆, m).

Finally, we substitute the known values of I1(m)
and I2(∆, m). Using the same notation as in (41),

I0(∆, m) = − m3

3 · 16π2

×
{(

2
ε

+ log
(

µ2

m2

)
+

8
3

)
ξ

(
ξ2 − 3

2

)
+

ξ

2
+ (ξ2 − 1)F(ξ)

}
, (53)

I1(∆, m) =
m3

3 · 16π2

×
{(

2
ε

+ log
(

µ2

m2

)
+

13
6

)
ξ(4ξ2 − 3)

+
3
2
ξ + (4ξ2 − 1)F(ξ)

}
. (54)

This is the general form for I2. We do not find agreement
with [11].

There are two particular cases of interest, in which
I2

µν can be easily computed directly by using the HQET
method for combining denominators, thus providing cross-
checks for our results. In the first place, we consider the
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case m = 0, ∆ > 0 (the case ∆ < 0 is analogous).
A straightforward computation using the HQET method
yields

I0
∣∣

m=0
∆>0

= − ∆3

3 · 128π2

(
2
ε

+ log
(

µ2

∆2

)
+

8
3

)
;

I1
∣∣

m=0
∆>0

=
∆3

3 · 32π2

(
2
ε

+ log
(

µ2

∆2

)
+

13
6

)
(55)

which agree with (53) and (54) evaluated at m = 0.
Second, in the case ∆ = 0 we find

I2
µν(vα, ∆ = 0, m) =

m3

3 · 16π
(gµν − vµvν), (56)

again in agreement with the corresponding limit of (53)
and (54). As remarked above in connection with the scalar
integral, there is no dimensional regularization pole in this
case.

Furthermore, if we assume 0 < ξ < 1 (m > ∆/2 > 0)
and expand in powers of ξ, we recover the result given in
[7].

5.2 Vector three-point integral

We now turn to the tensor three-point integrals, starting
with the vector one,

I3
µ(vα

1 , vβ
2 , ∆1, ∆2, m) =

iµ4−d

(2π)d

∫
ddq

× qµ

(2v1 · q − ∆1 + iε) (2v2 · q − ∆2 + iε) (q2 − m2 + iε)
.

(57)

On the left-hand side we omitted µ and d from the argu-
ment for brevity. We define, as before, two sets of form
factors,

I3
µ = I1v

µ
1 + I2v

µ
2 and F1,2 = v1,2 · I3, (58)

with Ij(Ω, ∆1, ∆2, m) and Fj(Ω, ∆1, ∆2, m) related by

I1 =
1 − Ω2

4Ω2

[−(1 − Ω2)F1 + (1 + Ω2)F2
]
,

I2 =
1 − Ω2

4Ω2

[
(1 + Ω2)F1 − (1 − Ω2)F2

]
. (59)

The form factors Fj can be expressed in terms of scalar
integrals as

F1,2 =
1
2
I2(∆2,1, m) +

∆1,2

2
I3(Ω, ∆1, ∆2, m). (60)

These equations give an explicit expression for I3
µ.

At zero recoil we have vµ
1 = vµ

2 = vµ and

I3
µ
∣∣
Ω=0 = vν · I3

ν
∣∣
Ω=0 vµ, with (61)

vν · I3
ν
∣∣
Ω=0 =

1
2
I2(∆2, m) +

∆1

2
I3(Ω = 0, ∆1, ∆2, m).

Using (42) we obtain

vν · I3
ν
∣∣
Ω=0 =

1
2

1
∆1 − ∆2

[∆1I2(∆1, m) − ∆2I2(∆2, m)]

if ∆1 6= ∆2 and

vν · I3
ν
∣∣
Ω=0 =

1
2
I2(∆, m) +

∆

2
∂

∂∆
I2(∆, m)

if ∆1 = ∆2 = ∆. This completes our treatment of the
vector integral.

5.3 The tensor three-point integral

We consider, finally, the tensor integral

I3
µν(vα

1 , vβ
2 , ∆1, ∆2, m) =

iµ4−d

(2π)d

∫
ddq

× qµqν

(2v1 · q − ∆1 + iε) (2v2 · q − ∆2 + iε) (q2 − m2 + iε)
.

(62)

In this case we have two sets of four form-factors each,

I3
µν = I11v

µ
1 vν

1 + I22v
µ
2 vν

2 + I12v
{µ
1 v

ν}
2 + I0g

µν , (63)

with v
{µ
1 v

ν}
2 = vµ

1 vν
2 + vµ

2 vν
1 , and

F11 = vµ
1 vν

1I3µν ; F22 = vµ
2 vν

2I3µν ; F12 = v
{µ
1 v

ν}
2 I3µν ;

F0 = gµνI3µν . (64)

The F s can be given in terms of the Is using (63). Invert-
ing those relations we obtain

I11 =
d − 1
d − 2

(1 − Ω2)2

16Ω4

× {
(1 − Ω2)2F11

+
(

Ω4 + 2
d − 3
d − 1

Ω2 + 1
)

F22 − (1 − Ω4)F12

}
+

1
d − 2

(1 − Ω2)2

4Ω2 F0,

I22 =
d − 1
d − 2

(1 − Ω2)2

16Ω4

{(
Ω4 + 2

d − 3
d − 1

Ω2 + 1
)

F11

+ (1 − Ω2)2F22 − (1 − Ω4)F12
}

+
1

d − 2
(1 − Ω2)2

4Ω2 F0, (65)

I12 = −d − 1
d − 2

(1 − Ω2)2

16Ω4

{
(1 − Ω4)(F11 + F22)

−
(

Ω4 +
2

d − 1
Ω2 + 1

)
F12

}
− 1

d − 2
1 − Ω4

4Ω2 F0,

I0 =
1

d − 2
(1 − Ω2)2

4Ω2 (F11 + F22) +
1

d − 2
F0

− 1
d − 2

1 − Ω4

4Ω2 F12.
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Using the results from Sects. 5.1 and 5.2 we can express
the F s in terms of scalar integrals as

F11 =
ω

4
I1(m) +

∆1 + ω∆2

4
I2(∆2, m)

+
∆2

1

4
I3(Ω, ∆1, ∆2, m),

F22 =
ω

4
I1(m) +

∆2 + ω∆1

4
I2(∆1, m)

+
∆2

2

4
I3(Ω, ∆1, ∆2, m), (66)

F12 =
1
2
I1(m) +

1
2
(
∆1I2(∆1, m) + ∆2I2(∆2, m)

)
+

∆1∆2

2
I3(Ω, ∆1, ∆2, m),

F0 = m2I3(Ω, ∆1, ∆2, m).

Here we are using a mixed notation, in terms of both ω
and Ω (see (13)), for brevity. Equations (63), (65) and (66)
give an explicit analytic expression for I3

µν . Notice also
the symmetry of (66) under exchange of ∆1 and ∆2. Just
as with the scalar integral, there are a number of particular
cases of interest which we briefly comment upon in the
remainder of this section.

5.3.1 The zero recoil case

In order to study the zero recoil case, it is convenient to
write I3

µν in terms of vectors vµ
± = 1/2(vµ

1 ± vµ
2 ). Instead

of (63) we then have

I3
µν = I++vµ

+vν
+ + I−−vµ

−vν
− + I+−v

{µ
+ v

ν}
− + I0g

µν . (67)

In the zero recoil limit, vµ
1 = vµ

2 = vµ
+ ≡ vµ. Using the

results of Sects. 5.1 and 5.2 it is not difficult to show that
when Ω = 0 we have vµ

−I3µν = 0. Therefore, we can write

I3
µν
∣∣
Ω=0 = I++

∣∣
Ω=0 vµvν + I0

∣∣
Ω=0 gµν . (68)

These form factors can be computed as before, the com-
putation resulting in

I++
∣∣
Ω=0 =

1
3

(
1 +

ε

12

)
×
{

I1(m) +
∆2

1 − m2

∆1 − ∆2
I2(∆1, m)

− ∆2
2 − m2

∆1 − ∆2
I2(∆2, m)

}
(69)

I0
∣∣
Ω=0 = − 1

12

(
1 +

ε

3

)
×
{

I1(m) +
∆2

1 − 4m2

∆1 − ∆2
I2(∆1, m)

− ∆2
2 − 4m2

∆1 − ∆2
I2(∆2, m)

}
. (70)

We notice that we could have arrived at these equations
by using a relation analogous to (42), namely

I3
µν
∣∣

Ω=0
=

1
∆1 − ∆2

(I2
µν(vα, ∆1, m) − I2

µν(vα, ∆2, m)),

(71)
showing the consistency of our result. These expressions
acquire a particularly simple form for some special values
of the parameters. For instance, setting m = 0, ∆j > 0,
j = 1, 2 and using either (71) and (55), or (69), we get

I0
∣∣

Ω=0
m=0

=
−1

3 · 128π2

1
∆1 − ∆2

×
{

∆3
1

(
2
ε

+ log
(

µ2

∆2
1

)
+

8
3

)
− ∆3

2

(
2
ε

+ log
(

µ2

∆2
2

)
+

8
3

)}
(72)

I++
∣∣

Ω=0
m=0

=
1

3 · 32π2

1
∆1 − ∆2

×
{

∆3
1

(
2
ε

+ log
(

µ2

∆2
1

)
+

13
6

)
− ∆3

2

(
2
ε

+ log
(

µ2

∆2
2

)
+

13
6

)}
, (73)

which provides another cross-check of our previous equa-
tions.

5.3.2 The case ∆1 = 0 = ∆2

Another case where the form factors for I3
µν take a very

simple form is when ∆1 = 0 = ∆2. In this case (63), (65)
and (66), together with our previous results for the scalar
integrals, give

I0
∣∣
∆j=0 =

m2

128π2

1 − Ω2

Ω

× log (α+)
(

2
ε

+ log
(

µ2

m2

)
+ 1
)

,

I11
∣∣
∆j=0 =

m2

128π2

×
[
−1 − Ω4

2Ω2 +
(1 − Ω2)3

4Ω3 log (α+)
]

×
(

2
ε

+ log
(

µ2

m2

)
+ 1
)

,

I22
∣∣
∆j=0 = I11

∣∣
∆j=0 , (74)

I12
∣∣
∆j=0 =

m2

128π2

×
[
(1 − Ω2)2

2Ω2 − (1 − Ω2)(1 − Ω4)
4Ω3 log (α+)

]
×
(

2
ε

+ log
(

µ2

m2

)
+ 1
)

.

We have also computed I3
µν for ∆j = 0 directly from its

definition (62) by using the HQET method for combining
denominators. Full agreement with (74) was found.
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5.3.3 The case m = 0

A direct calculation of I3
µν at m = 0 with the HQET

method is considerably more involved than in the previ-
ous case. The results are also much less compact. As an
illustration, we will quote the result for the form factor I0
when m = 0 and ∆1 = ∆2 ≡ ∆ > 0:

I0 = − ∆2

256π2 (1 − Ω2)

×
{(

1 +
1 − Ω2

2Ω
log (α+)

)(
2
ε

+ log
(

µ2

∆2

))
+ 3 +

(1 − Ω2)
2Ω

log (α+)

− (1 − Ω2)
4Ω

log
(

1 − Ω2

4

)
log (α+)

+
(1 − Ω2)

2Ω

(
Li2

(
1 − Ω

2

)
− Li2

(
1 + Ω

2

))}
.(75)

This equation agrees with the general result given by (65)
and (66), evaluated at m = 0, ∆1 = ∆2, as it should.

5.3.4 The chiral logs

In this section we focus on the case ∆1 = ∆2 ≡ δm, with
0 < δm/2 < m. We expand in powers of δm/m, retaining
only those terms proportional to log (m), with coefficients
computed to lowest order in δm/m. In this way, we obtain
the chiral logs in I3

µν .
From (41) and (43), we get

I1(m) = − m2

16π2 log
(

µ2

m2

)
+ · · · ;

I2(δm, m) =
δm

32π2 log
(

µ2

m2

)
+ · · · , (76)

where the ellipsis denotes terms not containing log (m), or
containing higher powers of δm. On the other hand, I3 is
needed only to zeroth order in δm because it enters the
form factors with δm2 as a coefficient. From (29),

I3(Ω, 0, 0, m) =
1

64π2

1 − Ω2

Ω
log (α+) log

(
µ2

m2

)
+ · · · .

(77)
With these approximations, we obtain the form factors as

F11 = F22 =
1

64π2 log
(

µ2

m2

){
−1 + Ω2

1 − Ω2 m2

+ δm2
(

1
1 − Ω2 +

1 − Ω2

4Ω
log (α+)

)}
+ · · · , (78)

F12 =
1

64π2 log
(

µ2

m2

)
×
{
−2m2+δm2

(
2 +

1 − Ω2

2Ω
log (α+)

)}
+· · · ,(79)

F0 =
1

64π2 log
(

µ2

m2

)
m2 1 − Ω2

Ω
log (α+) + · · · . (80)

These results agree exactly with those of [7], once we take
into account the differences in normalization and conven-
tions.

6 Final remarks

In phenomenological applications, the exact functional de-
pendence of the Feynman integrals on masses and residual
momenta is usually not needed. Often, the first few terms
in a series expansion in some of the parameters provides
the required accuracy. We believe, however, that the ex-
act analytic computation presented here does not require
more calculational effort than approximate schemes. It has
the further advantage of being valid over the entire phys-
ical region for internal and external masses.

Our result (30) for the scalar three-point integral in-
volves four dilogarithms. This is to be compared with
the analogous vertex integrals in renormalizable theories,
which are generally expressed in terms of twelve dilog-
arithms and a collection of logarithms [4,6]. This sim-
plification is afforded, of course, by the effective theory
formalism, which focuses only on the relevant degrees of
freedom. Equation (30) is quite compact. Once the values
for the internal and external masses are given, so that
the appropriate branches of square roots, logs and dilogs
are determined with the aid of the “iε” prescription, the
expression for I3 given by (30) is easily translated into
computer code.

Another possible approach to the computation of three-
point integrals is to consider them strictly within the con-
text of the effective theory, without introducing auxil-
iary integrals such as Ĩ3, see (3). In that case, one can
parametrize the integrand with the HQET method. The
resulting expressions are, however, difficult to handle and,
in general, they seem to lead to hypergeometric functions
of two variables or, more likely, to series of hypergeomet-
ric functions. The procedure adopted in this paper avoids
those difficulties.
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